پروژه های تحقیقاتی سانا

سازمان انرژیهای نو ایران تا کنون پروژه های موفق مطالعاتی، پایلوت و ساخت را در دست اقدام داشته که فهرست آن در سه جدول ذیل آمده است. این پروژه ها در قسمت پروژه های وبسایت به آدرس http://www.suna.ir/project-fa.html: معرفی شده است
جدول 1-فهرست پروژه های تحقیقاتی خاتمه یافته
جدول2-فهرست پروژه های تحقیقاتی در حال اجرا و یا در دست انعقاد قرارداد
جدول3- فهرست پروژه های تحقیقاتی دارای تایید و کد ملی از معاونت محترم علمی و فناوری ریاست جمهوری از محل 1% درآمد عملیاتی و بیشتر ( 1% در آمد عملیاتی سال 88 سانا نیز اختصاص به این پروژه ها دارد)
از: سازمان انرژی های نو


لطفا با ارائه نظرات خود ما را در بهتر شدن وبلاگ
یاری کنید.
To improve our Weblog
please comment us.

Fossil Fuels



شما می توانید این موضوع را از لینک به زبان فارسی ببینید.
برای مشاهده اینجا را کلیک کنید.


Where Fossil Fuels Come From

There are three major forms of fossil fuels: coal, oil and natural gas. All three were formed many hundreds of millions of years ago before the time of the dinosaurs - hence the name fossil fuels. The age they were formed is called the Carboniferous Period. It was part of the Paleozoic Era. "Carboniferous" gets its name from carbon, the basic element in coal and other fossil fuels.




Picture of carboniferous era swamp

Picture of coal on fire The Carboniferous Period occurred from about 360 to 286 million years ago. At the time, the land was covered with swamps filled with huge trees, ferns and other large leafy plants, similar to the picture above. The water and seas were filled with algae - the green stuff that forms on a stagnant pool of water. Algae is actually millions of very small plants.


Some deposits of coal can be found during the time of the dinosaurs. For example, thin carbon layers can be found during the late Cretaceous Period (65 million years ago) - the time of Tyrannosaurus Rex. But the main deposits of fossil fuels are from the Carboniferous Period. For more about the various geologic eras, go to www.ucmp.berkeley.edu/help/timeform.html
As the trees and plants died, they sank to the bottom of the swamps of oceans. They formed layers of a spongy material called peat. Over many hundreds of years, the peat was covered by sand and clay and other minerals, which turned into a type of rock called sedimentary.
Picture of coal pile More and more rock piled on top of more rock, and it weighed more and more. It began to press down on the peat. The peat was squeezed and squeezed until the water came out of it and it eventually, over millions of years, it turned into coal, oil or petroleum, and natural gas.


Coal

Coal is a hard, black colored rock-like substance. It is made up of carbon, hydrogen, oxygen, nitrogen and varying amounts of sulphur. There are three main types of coal - anthracite, bituminous and lignite. Anthracite coal is the hardest and has more carbon, which gives it a higher energy content. Lignite is the softest and is low in carbon but high in hydrogen and oxygen content.� Bituminous is in between. Today, the precursor to coal - peat - is still found in many countries and is also used as an energy source.
The earliest known use of coal was in China. Coal from the Fu-shun mine in northeastern China may have been used to smelt copper as early as 3,000 years ago. The Chinese thought coal was a stone that could burn.
Picture of coal deposits in U.S. Coal is found in many of the lower 48 states of U.S. and throughout the rest of the world. Coal is mined out of the ground using various methods. Some coal mines are dug by sinking vertical or horizontal shafts deep under ground, and coal miners travel by elevators or trains deep under ground to dig the coal. Other coal is mined in strip mines where huge steam shovels strip away the top layers above the coal. The layers are then restored after the coal is taken away.
The coal is then shipped by train and boats and even in pipelines. In pipelines, the coal is ground up and mixed with water to make what's called a slurry. This is then pumped many miles through pipelines. At the other end, the coal is used to fuel power plants and other factories.


Oil or Petroleum

Picture of oil formation Oil is another fossil fuel. It was also formed more than 300 million years ago. Some scientists say that tiny diatoms are the source of oil. Diatoms are sea creatures the size of a pin head. They do one thing just like plants; they can convert sunlight directly into stored energy.
In the graphic on the left, as the diatoms died they fell to the sea floor (1). Here they were buried under sediment and other rock (2). The rock squeezed the diatoms and the energy in their bodies could not escape. The carbon eventually turned into oil under great pressure and heat. As the earth changed and moved and folded, pockets where oil and natural gas can be found were formed (3).
Oil has been used for more than 5,000-6,000 years. The ancient Sumerians, Assyrians and Babylonians used crude oil and asphalt ("pitch") collected from large seeps at Tuttul (modern-day Hit) on the Euphrates River. A seep is a place on the ground where the oil leaks up from below ground. The ancient Egyptians, used liquid oil as a medicine for wounds, and oil has been used in lamps to provide light.
The Dead Sea, near the modern Country of Israel, used to be called Lake Asphaltites. The word asphalt was derived is from that term because of the lumps of gooey petroleum that were washed up on the lake shores from underwater seeps.
In North America, Native Americans used blankets to skim oil off the surface of streams and lakes. They used oil as medicine and to make canoes water-proof. During the Revolutionary War, Native Americans taught George Washington's troops how to treat frostbite with oil.
As our country grew, the demand for oil continued to increase as a fuel for lamps. Petroleum oil began to replace whale oil in lamps because the price for whale oil was very high. During this time, most petroleum oil came from distilling coal into a liquid or by skimming it off of lakes - just as the Native Americans did.
Picture of Edwin Drake and well. Then on August 27, 1859, Edwin L. Drake (the man standing on the right in the black and white picture to the right), struck liquid oil at his well near Titusville, Pennsylvania. He found oil under ground and a way that could pump it to the surface. The well pumped the oil into barrels made out of wood. This method of drilling for oil is still being used today all over the world in areas where oil can be found below the surface.
Oil and natural gas are found under ground between folds of rock and in areas of rock that are porous and contain the oils within the rock itself. The folds of rock were formed as the earth shifts and moves. It's similar to how a small, throw carpet will bunch up in places on the floor.
To find oil and natural gas, companies drill through the earth to the deposits deep below the surface. The oil and natural gas are then pumped from below the ground by oil rigs (like in the picture). They then usually travel through pipelines or by ship.
Picture of oil rigs circa 1900, Santa Barbara.

Picture of oil rigs.
Oil is found in 18 of the 58 counties in California. Kern County, the County where Bakersfield is found, is one of the largest oil production places in the country. But we only get one-half of our oil from California wells. The rest comes from Alaska, and an increasing amount comes from other countries. In the entire U.S., more than 50 percent of all the oil we use comes from outside the country...most of it from the Middle East.
Oil is brought to California by large tanker ships. The petroleum or crude oil must be changed or refined into other products before it can be used.


Refineries

Picture of oil refinery. Oil is stored in large tanks until it is sent to various places to be used. At oil refineries, crude oil is split into various types of products by heating the thick black oil.
Oil is made into many different products - fertilizers for farms, the clothes you wear, the toothbrush you use, the plastic bottle that holds your milk, the plastic pen that you write with. They all came from oil. There are thousands of other products that come from oil. Almost all plastic comes originally from oil. Can you think of some other things made from oil?
The products include gasoline, diesel fuel, aviation or jet fuel, home heating oil, oil for ships and oil to burn in power plants to make electricity. Here's what a barrel of crude oil can make.
In California, 74 percent of our oil is used for transportation -- cars, planes, trucks, buses and motorcycles. We'll learn more about transportation energy in Chapter 18.





What's in a barrel of oil.

Source: American Petroleum Institute (www.api.org). Figures are based on 1995 average yields for U.S. refineries. One barrel contains 42 gallons of crude oil. The total volume of products made is 44.2 GALLONS - 2.2 gallons greater than the original 42 gallons of crude oil. This is called "processing gain," where other chemicals are added to the refining process to create the products.











Natural Gas

Sometime between 6,000 to 2,000 years BCE (Before the Common Era), the first discoveries of natural gas seeps were made in Iran. Many early writers described the natural petroleum seeps in the Middle East, especially in the Baku region of what is now Azerbaijan. The gas seeps, probably first ignited by lightning, provided the fuel for the "eternal fires" of the fire-worshiping religion of the ancient Persians.
Natural gas is lighter than air. Natural gas is mostly made up of a gas called methane. Methane is a simple chemical compound that is made up of carbon and hydrogen atoms. It's chemical formula is CH4 - one atom of carbon along with four atoms hydrogen. This gas is highly flammable.
Natural gas is usually found near petroleum underground. It is pumped from below ground and travels in pipelines to storage areas. The next chapter looks at that pipeline system.
Natural gas usually has no odor and you can't see it. Before it is sent to the pipelines and storage tanks, it is mixed with a chemical that gives a strong odor. The odor smells almost like rotten eggs. The odor makes it easy to smell if there is a leak.
Energy Safety Note! If you smell that rotten egg smell in your house, tell your folks and get out of the house quickly. Don't turn on any lights or other electrical devices. A spark from a light switch can ignite the gas very easily. Go to a neighbor's house and call 9-1-1 for emergency help.



Saving Fossil Fuels

Fossil fuels take millions of years to make. We are using up the fuels that were made more than 300 million years ago before the time of the dinosaurs. Once they are gone they are gone.
So, it's best to not waste fossil fuels. They are not renewable; they can't really be made again. We can save fossil fuels by conserving energy. 
From:www.energyquest.ca.gov

Biomas Energy

شما می توانید این موضوع را از لینک به زبان فارسی ببینید.
برای مشاهده اینجا را کلیک کنید.
PIcture of wood chips. Biomass is matter usually thought of as garbage. Some of it is just stuff lying around -- dead trees, tree branches, yard clippings, left-over crops, wood chips (like in the picture to the right), and bark and sawdust from lumber mills. It can even include used tires and livestock manure.

Your trash, paper products that can't be recycled into other paper products, and other household waste are normally sent to the dump. Your trash contains some types of biomass that can be reused. Recycling biomass for fuel and other uses cuts down on the need for "landfills" to hold garbage.

This stuff nobody seems to want can be used to produce electricity, heat, compost material or fuels. Composting material is decayed plant or food products mixed together in a compost pile and spread to help plants grow.

California produces more than 60 million bone dry tons of biomass each year. Of this total, five million bone dry tons is now burned to make electricity. This is biomass from lumber mill wastes, urban wood waste, forest and agricultural residues and other feed stocks.

If all of it was used, the 60 million tons of biomass in California could make close to 2,000 megawatts of electricity for California's growing population and economy. That's enough energy to make electricity for about two million homes!

PIcture of corn husks harvesting. How biomass works is very simple. The waste wood, tree branches and other scraps are gathered together in big trucks. The trucks bring the waste from factories and from farms to a biomass power plant. Here the biomass is dumped into huge hoppers. This is then fed into a furnace where it is burned. The heat is used to boil water in the boiler, and the energy in the steam is used to turn turbines and generators (see Chapter 8).

Biomass can also be tapped right at the landfill with burning waster products. When garbage decomposes, it gives off methane gas. You'll remember in chapters 8 and 9 that natural gas is made up of methane. Pipelines are put into the landfills and the methane gas can be collected. It is then used in power plants to make electricity. This type of biomass is called landfill gas.

A similar thing can be done at animal feed lots. In places where lots of animals are raised, the animals - like cattle, cows and even chickens - produce manure. When manure decomposes, it also gives off methane gas similar to garbage. This gas can be burned right at the farm to make energy to run the farm.

Using biomass can help reduce global warming compared to a fossil fuel-powered plant. Plants use and store carbon dioxide (CO2) when they grow. CO2 stored in the plant is released when the plant material is burned or decays. By replanting the crops, the new plants can use the CO2 produced by the burned plants. So using biomass and replanting helps close the carbon dioxide cycle. However, if the crops are not replanted, then biomass can emit carbon dioxide that will contribute toward global warming.

PIcture of biomass power plant. So, the use of biomass can be environmentally friendly because the biomass is reduced, recycled and then reused. It is also a renewable resource because plants to make biomass can be grown over and over.

Today, new ways of using biomass are still being discovered. One way is to produce ethanol, a liquid alcohol fuel. Ethanol can be used in special types of cars that are made for using alcohol fuel instead of gasoline. The alcohol can also be combined with gasoline. This reduces our dependence on oil - a non-renewable fossil fuel.
From:www.energyquest.ca.gov

Geothermal Energy

شما می توانید این موضوع را از لینک به زبان فارسی ببینید.
برای مشاهده اینجا را کلیک کنید


Geothermal Energy has been around for as long as the Earth has existed. "Geo" means earth, and "thermal" means heat. So, geothermal means earth-heat.
[Earth's crust] Have you ever cut a boiled egg in half? The egg is similar to how the earth looks like inside. The yellow yolk of the egg is like the core of the earth. The white part is the mantle of the earth. And the thin shell of the egg, that would have surrounded the boiled egg if you didn't peel it off, is like the earth's crust.
Below the crust of the earth, the top layer of the mantle is a hot liquid rock called magma. The crust of the earth floats on this liquid magma mantle. When magma breaks through the surface of the earth in a volcano, it is called lava.
For every 100 meters you go below ground, the temperature of the rock increases about 3 degrees Celsius. Or for every 328 feet below ground, the temperature increases 5.4 degrees Fahrenheit. So, if you went about 10,000 feet below ground, the temperature of the rock would be hot enough to boil water.
Picture
of Emerald Pool at Yellowstone Picture
of Old Faithful Geyser at Yellowstone Deep under the surface, water sometimes makes its way close to the hot rock and turns into boiling hot water or into steam. The hot water can reach temperatures of more than 300 degrees Fahrenheit (148 degrees Celsius). This is hotter than boiling water (212 degrees F / 100 degrees C). It doesn't turn into steam because it is not in contact with the air.
When this hot water comes up through a crack in the earth, we call it a hot spring, like Emerald Pool at Yellowstone National Park pictured on the left. Or, it sometimes explodes into the air as a geyser, like Old Faithful Geyser pictured on the right.
About 10,000 years ago, Paleo-Indians used hot springs in North American for cooking. Areas around hot springs were neutral zones. Warriors of fighting tribes would bathe together in peace. Every major hot spring in the United States can be associated with Native American tribes. California hot springs, like at the Geysers in the Napa area, were important and sacred areas to tribes from that area.
In other places around the world, people used hot springs for rest and relaxation. The ancient Romans built elaborate buildings to enjoy hot baths, and the Japanese have enjoyed natural hot springs for centuries.

Geothermal Today

Geothermally heated greenhouse Today, people use the geothermally heated hot water in swimming pools and in health spas. Or, the hot water from below the ground can warm buildings for growing plants, like in the green house on the right. In San Bernardino, in Southern California, hot water from below ground is used to heat buildings during the winter. The hot water runs through miles of insulated pipes to dozens of public buildings. The City Hall, animal shelters, retirement homes, state agencies, a hotel and convention center are some of the buildings which are heated this way.
In the Country of Iceland, many of the buildings and even swimming pools in the capital of Reykjavik (RECK-yah-vick) and elsewhere are heated with geothermal hot water. The country has at least 25 active volcanoes and many hot springs and geysers.

Geothermal Electricity

Map of known geothermal areas in California. Hot water or steam from below ground can also be used to make electricity in a geothermal power plant. In California, there are 14 areas where we use geothermal energy to make electricity. The red areas on the map show where there are known geothermal areas. Some are not used yet because the resource is too small, too isolated or the water temperatures are not hot enough to make electricity.
The main spots are:
  • The Geysers area north of San Francisco
  • In the northwest corner of the state near Lassen Volcanic National Park
  • In the Mammoth Lakes area - the site of a huge ancient volcano
  • In the Coso Hot Springs area in Inyo County
  • In the Imperial Valley in Southern California.

Geysers Unit 18 Geothermal Power Plant Some of the areas have so much steam and hot water that it can be used to generate electricity. Holes are drilled into the ground and pipes lowered into the hot water, like a drinking straw in a soda. The hot steam or water comes up through these pipes from below ground.

You can see the pipes running in front of the geothermal power plant in the picture. This power plant is Geysers Unit # 18 located in the Geysers Geothermal area of California.
A geothermal power plant is like in a regular power plant except that no fuel is burned to heat water into steam. The steam or hot water in a geothermal power plant is heated by the earth. It goes into a special turbine. The turbine blades spin and the shaft from the turbine is connected to a generator to make electricity. The steam then gets cooled off in a cooling tower.
The white "smoke" rising from the plants in the photograph above is not smoke. It is steam given off in the cooling process. The cooled water can then be pumped back below ground to be reheated by the earth.

Geothermal / Ground Source Heat Pumps

Though it gets much hotter as we go deep below ground, the upper layer of the earth close to the surface is not very hot. Almost everywhere across the entire planet, the upper 10 feet below ground level stays the same temperature, between 50 and 60 degrees Fahrenheit (10 and 16 degrees C). If you've ever been in a basement of a building or in a cavern below ground, the temperature of the area is almost always cool.
A geothermal or ground source heat pump system can use that constant temperature to heat or cool a building. Pipes are buried in the ground near the building. Inside these pipes a fluid, like the antifreeze in a car radiator, is circulated.
In winter, heat from the warmer ground goes through the heat exchanger of a heat pump, which sends warm air into the home or business. During hot weather, the process is reversed. Hot air from inside the building goes through the heat exchanger and the heat is passed into the relatively cooler ground. Heat removed during the summer can also be used to heat water. 
From:www.energyquest.ca.gov